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i. Thermal dissociation of diatomic molecules often takes place under conditions 
when the energy threshold of the reaction - the dissociation energy Q - considerably ex- 
ceeds the average thermal energy of the particles, of order kT, where k is the Boltzmann 
constant and T is the gas temperature. In investigations of reaction kinetics one usually 
uses the "ladder" model, according to which molecules dissociate form upper vibrational levels 
whose energy E~ (~ is the level number) is close in value to Q. According to this model, in 
flows or nonsteady processes when the condition TVT << O is satisfied (rVT is the vibrational 
relaxation time and ~ is the characteristic time of flow or of the process), a quasisteady 
distribution of the molecules with respect to E~, which for E~ % Q can differ considerably 
from an equilibrium Boltzmann distribution, is formed in a gas under the action of the flow 
of molecules along the vibrational levels caused bythe reaction. This, in turn, causes a 
departure of the reaction rate from the equilibrium value [i]. 

Motion of the gas, while influencing the populations of vibrational levels (the more so, 
the higher the energy of the level), is also capable of altering the dissociation rate. As 
follows from [2, 3], however, forsufficiently lowvalues of the ratio rVT/% the influence of 
motion on the reaction kinetics can be neglected. This is just the case considered in the 
paper. Moreover, it is assumedthat the dissociating diatomic molecules comprise a small ad- 
mixture in a monatomic inert gas. 

Kinetic investigations of the above-described dissociation model are usually based on 
the assumption that the distributions of the molecules by velocities $~j and rotational 
energies Ej (j is the rotational level number) are in equilibrium. The smallness of the times 
of translational and rotational relaxation, r e and rRT, in comparison with the character- 
istic reaction time r C % ~eexp (Q/kT) serves as an argument [4-6]. For E~ % Q, however, the 
probability of dissociation of a molecule in a collision with an atom may be finite, while 
the dependence of this probability and the probabilities of other inelastic collisions on 
the velocities and internal energies of the particles may lead to the fact that the develop- 
ment of a flow of molecules along the vibrational levels is accompanied by an increase in the 
"loss" of molecules from ndividual rotational levels or a decrease in the number of mole- 
cules in a certain interval of velocities $~j. Therefore, smallness of r e and TRT in com- 
parison with �9 C actually is not a criterion of equilibrium of the distributions over $c~j and 
Ej of molecules with E~ % Q >> kT. 

The foregoing is confirmed in [7], where the velocity distribution of molecules 
dissociating from an upper vibrational level is calculated by the Monte Carlo method and its 
considerable difference from a Maxwellian distribution is determined, as well as the departure 
of the reaction rate from equilibrium, connected with this difference. The solution was 
obtained under several assumptions: a Boltzmann distribution was E~, rotations are not 
taken into account, and the influence of the reaction products is neglected. 

In connection with the above, in the paper we investigate the quasisteady distributions 
of dissociating molecules over $~j and Ej, as well as the influence of a disturbance i n the 
equilibrium character of such distributions on the kinetics of dissociation. 

2. Let us obtain the equation of the main approximation for f~j - the distribution 
function of the dissociating molecules over ~j, Ej, and E~. In the spatially uniform case 
the Boltzmann equation has the form 

= (s j + R : 5  + + K J $ ) .  (2.1> 
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Here the integrals, normalized to the corresponding frequencies, of elastic and rotationally 
and vibrationally inelastic collisions of molecules with inert atoms, as well as of collisions 
leading to reactions, are designated as je jR. jV. and jC The values of the probabilities ~j' a j '  e j '  ~j" 

of inelastic collisions characteristic for the ranges of ~aj and Ej under consideration, 

1~<~1 ~ (kTtrn)  ~lz, Es ~ k T  ( 2 . 2 )  

are designated as R, P , and K . In (2.2) and later m is the mass of a molecule. 

Integrating (2.1) over $aj and summing the result first over j and then over a, we obtain 
the equations 

aN~<~ t ( R X ~  + P<~[~ + K < J $ ) ,  Z~<j = ~ :<#~<j; ( 2 . 3 )  
Ot m e 

alv~ i ( p  [~r . I c  ~ N = i ,  I= ~ [ a i ;  a t  = "~" o~ + If~ ~), n ~  = = ( 2 . 4 )  
j 

ON 1 "~2 ~" r e -  - ---- -- ,,.o~:a = N W ,  W ,~ "rct ( 2 . 5  ) 
Ot ~e ~ 

for Naj , N~, and N [Naj is the number density of molecules in the state (~j), N a is the same 

for the vibrational level with the energy Ea, and N is the total number density of molecules]. 

By virtue of the exponential smallness of the populations of upper vibrational levels with 
energies E~ ~ Q, for which K a = 0(I), the characteristic reaction time ~C for Q >> kT is 

exponentially long compared with ~e" Therefore, the situation when 

Tc >> max (Te, %R -1, % P ~ )  ( 2 . 6 )  

is realistic. 

We note that the time scale ~C is not present explicitly in Eq. (2.1), it is not determined 
until the solution, and it enters into the problem through (2.5), i.e., through the moments 
faj [8]. Such a situation is possible only for Q >> kT. 

Omitting the solution over time intervals of the order of x e, Te R-z, and Te P-i, when the 
distributions over $~j, Ej, and E~ are formed, we consider Eq. (2.1) at times t ~ ~C- We 
assume that here f~j Noes not depend explicitly on t but through those moments faj and 
distribution functions of other components of the mixture which vary over this time scale. 
The solution confirms this assumption (also see [i, 2, 9]). In the spatially uniform case 
N and Na, the number density of dissociated atoms, are such moments, in accordance with 
(2.5). As a result, we find 

al~j af~j aN a/~j aY~ f~j l~j ( 2 .7  ) 
o - T ~  aN at + aN a at ~ ~ << ]aj ~ -T e , 

aNsi N~) ON a N~ 
- -  . ~  - - .  

Ot ~ T C ' at T C 

We note that the equation for J~j = obtained from (2.1) with allowance for ( 2 . 7 )  is solvable 
only for W = 0, which is at varzance with the assumption that the composition of the mixture 
is not in equilibrium at times t ~ T C. The contradiction is connected with the fact that, 
by virtue of Q >> kT, different sections of the vibrational spectrum make the main contri- 
bution to the reaction rate NW and the derivative 8N/St which, in reality, are comparable 
with each other in magnitude, despite (2.7). 

To remove the contradiction, we transform the system of equations (2.1) as follows. 
Let Fa~ , B~, and Ba be equilibrium distributions of the molecules over $~j, Ej, and Ea, 

J 
respectively, normalized to unity. Neglecting the interaction of rotations and vibrations, 
we shall take the internal energy of a molecule in the state (~j)as equal to the sum of E~ 
and E~.j In this case ~! = B~Bj can be considered as the equilibrium distribution of the 
molecules over E~ and 

We multiply both sides of (2.3) by F ~ and subtract from (2.1). With the help of Bj and 
(2.4) we do the same with respect to (2.37~ while with the help of B a and (2.5) we do the same 
with respect to (2.4). The combination of the resulting equations and (2.5) is equivalent to 
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(2.1): Each of these equations is a projection of (2.1) onto one of the mutually orthogonal 
subspaces of the functions $~j, Ej, and Ea, expanded "about" F~jB~j with respect to orthogonal 
polynomials of these arguments. ~pplying the estimates (2.7) to the resulting equations and 
using (2.6), we write the equations of the main approximation in the form 

j e  R ~, + B ( S=~ - -  Fa~I~) + P .  ( J r  __ F~I~I )  + K~ ( J e  _ F=~Ic ) = 0;. 

B ~ v B v c I ~  + Pc~ (1=~ - -  fl~ ) + K(~ ( I ~  - -  B'fl c) = O; 

'7 

ON__= _t Z K J  c ==- N W .  
Ot ~e ? 

( 2 . 8 )  

( 2 . 9 )  

(2.1o) 

( 2 . 1 1 )  

Equations (2.8)-(2.10) are also valid in the case of spatially nonuniform flows, where 
the scales of variation of f~j and the macroscopic parameters with time and over the coordinates 
are tied to the form of the boundary or initial conditions if the scale of variation of the 
flow is L ~ ~C u (u is the velocity of the gas, comparable with the speed of sound). Here the 
left side of (2.11) has the form 3N/3t + VNu. 

One can show that at times t % ~C or scales L % ~C u the atomic components of the mixture 
have a Maxwellian velocity distribution to within ~e/~C. At the same time, solutions of the 
system of equations (2.8)-(2.11) for upper vibrational levels can differ strongly from 
equilibrium distributions owing to the presence of a "sink" or "source" of molecules, finite 
in intensity, in the reaction. One can ascertain this by substituting equilibrium distribu- 
tions over $~j, Ej, and E~ and nonequilibrium values of the concentrations into the system: 
The system is not satisfied. 

3. At first, for simplicity, we neglect the disturbance in the Maxwellian distribution 
of the dissociating molecules. In this case Eqs. (2.9)-(2.11) can be solved. Assuming that 
the molecules undergo vibrational transitions only between neighboring levels, we write the 
first of them in the form 

(p~l~y,~_~ __ D~--~ p~+~y~ = __ z~aqv, q =q ~j ~aj  v Z .t o;j .~ a~ - -  at ~ + l q * g + l q  
q 

where W~j is the partial reaction rate, normalized to N, for molecules in the state (~j): 

w ~  ~ = ZK~ (B~.f l - -  Y~,~), H = -~ evo ~q 

(3.1) 

( 3 . 2 )  

Z is the collision frequency; Y=j = N=jN-~; R~ is the probability of an R-T transition 

DO~q-lq (~] --~ ~q); _=~ are the probabilities of V-R and V-T transitions (~y --> (~ ~ 1)q); K=j 

is the probability of dissociation of a molecule from the state (~j); the equilibrium value 
of the ratio N/N 2 is designated by the index eq. 

a 

Equation (2.10) follows from (3.1) and (3.2) after summation over j. 
\ 

(P,~-lqY~-lq q- P~+lqYcc+lq ~ j  ~ j - - * ~ j  ~jj -- wa~ w~ W~-- B~W, W~ Z ~.  '~J ~J __ ~ - l q ~ r  ~ ~ ~ W . 
�9 ~ - . .~- . ,  ~ ~ 0 : 3 .  

ql j 

The probabilities R~q and P~+~q satisfy the relations 
a3 ~3 

~ a j B j  = R u q B q ~  x a j  ~ j  ~ P(z+~qBc~fl:~q~ 

valid for Maxwellian distribution functions of the colliding partners. 
linearity of Eqs. 

(3.3) 

(3.4) 

On the strength of the 
(3.1) and (3.3) with respect to Yaj, we seek their solution in the form 

Y~5 = B~(~ + x~, + y.J), ~ B~u~j = o, ~B~x~ = o; ( 3 . 5 )  

with the functions T~o = y~j(l + %~)-i and Xa, determining the departures of the distribu- 

tions over Ej and E a from equilibrium distributions, not assumed to be small in comparison 
with unity. Substituting (3.5) into (3.3), usingproofby induction we obtain for Xa the 
expression 

t ( 3 . 6 )  
6~I ZP~-I~8 ~6 6~I q h  
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on the basis of which, and with allowance for (3.4) and (3.5), we write Eq. (3.1) as 

[q~ ~-- lq  __  
ZB(zi R~ q (yaq - -  y~)  4- E P=~ (Y~-lq Ya)) 4- 

q 

+ E ~, - ~- ~ ~+~j = ( ~  ~ w ~ -  w ~ 3  + 
q 

o [ Lo,] 
' B ~ = - 1  e + l ~  ~ - 1  + ~ t ~  - ~  ~. E w , + w  B ~ ( ~ - - ~  ) - - B ~ ( ~ I ;  1 ~+1, 

( 3 . 7 )  

In (3.6) and (3.7) we use the notation 

Do$~=lq y)(z• Cz• Da~=lq ( Da~l"~--i  

q 
o:+1 ~ ~-]-lq ~ O~--lqD 

Uo~)- = .~.;aa~ , So~ = ~ Uah ~h (YO:--lq - -  Yah), 
q qh 

( 3 . 8 )  

being the number of the variational level with the maximum energy. 

, ~ D c t ~ I B ~ j  = ~ i l B ~ i l ,  By v i r t u e  o f  ( 3 . 4 )  t h e  p r o b a b i l i t i e s  pa+t  s a t i s f y  t h e  e q u a l i t i e s  _=~ 
a3 

where P~• = ~ From is seen ~ = ~ = ~+~ Pa• this it that p~i, p~• and -~i~ ~, if P~J depend q 
on Ej in the same way as on Bj. The reverse statement is also valid. 

Now let us assume that K~9 = K ~ ~- ~ BhKah and p~?l p~-~ ' l  =--a �9 Then the right side of (3.7) 
h 

is equal to ByV-a--Wa4=ZKO~B~y=i for all a, i.e., we obtain a homogeneous system of 

equations for yaj, the form of which does not depend on the degree of nonequilibrium of the 

flow. Since y �9 = 0 in equilibrium, it follows that this system has only trivial solutions. ~j - 

Thus, we can condlude that the dependence Kaj and P~+~ on Ej (see Sec. i) is the direct cause 
a3 

of the disturbance of the equilibrium rotational distribution of the dissociating molecules. 

The further advance in the analysis of the properties of the distribution that develops 
over Ej enables us to assume that the dissociation takes place only from the upper 8-th 
vibrational level. Here Ka~ = 0 for ~ < ~ and W = W~. In this case we can obtain the 
following expressions for ~Y~----~Y~j, W~j, and W using (3.2), (3.6), and (3.8): 

MY~ = B ~ [ I  + B ~ K ~ L p ( H  - -  C) + S, ] ,  

M W ~  = Z K ~ B ~  [(H -- t) + B~K~Lp (C - -  y~)  - -  S ,  " y~] ,  " ( 3 . 9 )  

M W  = Z I ~ B ~  [(H -- t) - -  S ,  -- C], 

where 

L v = L ~ - I ,  L = =  ~ ( P ~ - ' B 6 )  -1 i - -  B ,  :,: l =  E B~Lz,  
5=1 u = l  

0 --1 
M =- 1 + Bf~KgLp, C = ~_J • zf3~ = K~j (Kt3) , 

J 
f~ f~ x 

s ,  = s - b, s = E s~, b = y~ R~ y ,  s~. 
6=1 x : 1  6=1 

Substituting (3.9) into (3.7), we write the equations for Yaj in the form 

+ [~I ;  ~ - =~j + B,~(I - -  ~ I ;g lK~  + [~171 + K~jB~L, + B~(~-- ~ I ; g I K I C }  = 

= Z ~ K ~  (H- -  ~) [ @ 1  _ ~ j  + ~ ( 1  - -  ~ ; I ) ] ;  

(3.1o) 

P ~  (Y~,-I~--Y~) +~P~]-lq(Y~'+lq Y~)-- ~,~ ~ +  ~J ~ " ,+ q+  (3 .11)  
q q 
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(z- - I  ~+I'% 

= ZK~ (H  -- ~). z ~  -- ~ ! - -  

B, e q- B ~ ( I  - -  ~t~i ; 
~=~+I 

the parameter ~ in (3.11) is ~ = ~ - i, $ - 2 ..... O. From this it is seen that for 
=+i = i we obtain a homogeneous  s y t e m  o f  e q u a t i o n s  f o r  y~j  p o s s e s s i n g  o n l y  a 

triwial solution. By virtue of Q >> kT, terms proportional to B~(i--~), V~(i_~7~ 

and ~ B~ can be neglected in Eqs. (3.10) and (3.11) for the upper vibrational levels. 
~=~+I 

As is seen from the structure of the equations, the functions y~j are proportional to 

(H - i). Noting this and turning to (3.9) and the definitions of S, and C, we find that a 
disturbance of the equilibrium distribution over Ej, just as for that over E~ (see [I]), 
does not affect the value of the equilibrium constant of the dissociation reaction. 
Moreover, the ratio between the rates of the forward and reverse chemical processes also 
remains in equilibrium in a calculation of the partial reaction rate W~j. However, by 
virtue of (3.6) and (3.9), a departure of the distribution over Ej from-equilibrium leads 
to a change in the population of the upper vibrational level and, as a consequence, to a change 
in the dissociation rate constant. To estimate the size of these effects, we consider the 
properties of the solution for Yaj" 

We can assume that the departure of the distribution over Ej from equilibrium grows 
with an increase in E~. First, it is well known that for E~ % kT this departure has an ex- 

ponentially small value ~T~TT~%(RTC) -I. At upper levels, however, where E a % Q >> kT, 

the departure may be finite by virtue of the finite value of the "discrepancy" in Eqs. (3.10) 
and (3.11) when equilibrium distributions over Ej are substituted into them. Second, the 
flow of molecules along the vibrational levels caused by the reaction leads to a greater 
difference from an equilibrium over E~, the higher the number of the vibrational level under 
consideration [see (3.6)], since the amount of the flow determined by the reaction is provided 
by an ever smaller number of molecules. The strong degree of noncompensation of the 
"appearance" and "disappearance" of molecules with a given energy E. that develops in this 
case also, evidently~ grows with an increase in E~. The departure ~f the distribution over 
Ej from equilibrium should increase as a result. On the strength of this~ we write the esti- 
mates 

E pCc--lq 
q 

and using them, we represent the solution for Yaj in the form 

* B e * 
y~j  = ( / f  - -  1)  y ~ ,  y~ j  = ( H  - -  t )  ~ y ~ j ,  ~ = ~ - -  t ,  ~ - -  2 ,  . . . ,  (~.12) 

where the functions y~j and y~j are close to each other in order of magnitude, 

, , P~K~ , P~K~ (3.13) 
YI~J ~ (p~ + x~) (R + PI~ + K~), Y~J ~ (pj~ + ~ )  (R + p~) ' 

and depend relatively weakly (in comparison with B~) on E~, since P~ ~ R % i. The expressions 
(3.12) and (3.13) support the reasoning about the form of disturbance of the distribution over 
Ej and show that the disturbance can be finite for levels with E a % Q for R % R~ % K~. In this 
case finite corrections go into the population of an upper vibrational level, into t e proba- 
bilities of V-T transitions and dissociation, and into the macroscopic reaction rate. 
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If P8 << KB, the values of yBj decreases, in accordance with (3.13), since the reaction 
rate decreases in this case, as well as the flow of molecules over the vibrational levels, 
connected with it and disturbing the equilibrium distribution over E a and Ej. Let us consider 
this case in more detail. Here we can use (3.9), (3.12), and (3.13) to obtain the estimates 

[ ol [ w~ z~p~ iz~" ~){~ + L x~ ] + [ ~ + ~ ]  ~' 

[ 1 1"/, 
p 

~ =  ~ + ~ ~  ~-V-g;[~-7-r~j " 

(3.14) 

In (3.14) the symbols [...IV and [...]R mean that the contribution of the corresponding order 
is due to the disturbance of the equilibrium distribution over E a or over Ej. From (3.14) 
it is seen that in the spatially uniform case with P~ << K~ a finite disturbance of the 
equilibrium distribution over Ej, ~j~ K~(R + K~) -z, is possible only in the initial stage 
of the reaction, when H % P$/K~. This disturbance also makes a finite contribution to the 

population of an upper vibrational level. For P~/KH << H < i, when the departure of YB from 
B~ is still large, the functions~j decrease considerably: ~j ~ (If--I)P~[H(R + K~)] -I . 
Their contribution to the population of the vibrational level with an energy E~ is also 
small. We note that the chnages in WSj can be finite here, although the changes in 

W=~_.~W~j connected with the disturbance of the Bj distribution are small: The finite 
3 

corrections vanish in the summation over j. 

The approximate calculation of Yaj should bebased on the properties of these functions 

defined by (3.12) and (3.13) If the disturbance of Bj takes place with E. % kT, then it is 
" 3 

appropriate to approximate the dependence of yaj on E~-and Ej using the expansion 

B~ ~ ~ d(k,r)~(~)n(r) 
g~ = (H -- ~) ~ ~=0 ~=~ ~ -~ ' 

where H~ r) are Waldman-Trubenbacher polynomials of Ej; p~k) are polynomials introduced through 
the expressions 

: O) Ea  - -  eV 
�9 , ~ = O , k # h ,  

~ 0  

exp 

and possess good convergence for E a ~ Q. In the case when R >> P~ ~ K B, the system (3.10), 
(3.11) in the main approximation breaks up into a series of Lnxlependent equations, 

o I~--:t 

q 

M E RI~ ( y~  - -  y=j) = ( U - -  I )  T = , ~ t  =j - -  .,=5 J, 
q 

the last of which is written under the assumption that E~ >> kT. In accordance with (3.15), 
in a first a p p r o x i m a t i o n  w i t h  r e s p e c t  t o  t h e  p o l y n o m i a l s  II(. r )  we f i n d  

3 

~ Zj(1)]_l.(1) 8~ M}I) - -  E~ - -  E a E a  = X BaEh, ( 3 . 1 6 )  
kT h 
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0 B-1  
- 

i 2 j  ~j j .  - - E ~ )  ' 
q.i 

o ~-I 

q~ 

4 .  The solution to the problem of the velocity distribution of the dissociating mole- 
cules, or at least an analysis of its general properties like that made in Sec. 3, require 
cumbersome transformations and calculations in the general case. As an illustration, there- 
fore, we consider a reaction model when the molecules dissociate frm an upper vibrational 
level, while the cross sections of elastic and inelastic collisions between molecules and 
inert atoms satisfy the conditions 

(4.1) 

We shall assume that t % ~C or L % ~C u. By virtue of the smallness of the concentration 
of molecules, the distribution functions of the atomic components differ from Maxwellian 
distributions by the exponentially small terms ~e/~C. We represent the solution for f~j in 
the form 

(a.2) 

where f(~) is the solution of Eq. (2.8) of the main approximation; ]~ = NF~B~; [~:o is the 

Maxwellian distribution of molecules in the state (~j); the functions 0". characterize the 

disturbance of f~j0- in connection with its definition, ~j are considerably exceed ~aj in 

magnitude, which is connected with the depletion of the population of the upper vibrational 
levels due to the "sink" of molecules into the reaction. We obtain the solution for ~aj for 
levels with energies E a << kT, where the disturbance of faj0 is greatest. 

One can show that for the adopted conditions y~j in the main approximation satisfy Eqs. 
(3.15), the approximate solution of which is given by Eqs. (3.16). The functions ~j are 
found from the equations 

MB~y~ S Fo ( ~  -- ~ )  dF~c~ = B~jFa~K~ (H -- 1) A ,  i - -  MBa:F~ ~.~ r~ (Yaq " Y ~ : ) ,  ~ = ~, ~ - -  l~ ~ - -  2, . . . , .  ( 4 . 3 )  

which, under the condition (4.1), follow from (2.8)-(2.10) after the substitution of the 
solution in the form (4.2) and the determination , using proof by induction, of the expression 
for X~ through W, y~j, and Oaj (see below), neglecting definitely small terms in the equation. 
In (4.3) F 0 is the Maxwellian distribution of inert atoms, normalized to unity; dF = gdo; g 
is the relative velocity; o is the cross section of the corresponding process in a collision; 

is the velocity of the inert atoms; 

_ _  I~ ~ - ~  .__ r l ~ + l  A~j  = H~7 -1 X~j; A~j = ~j ~ , ~z < ~; 

~ ,  f odr~ j d~, r~ Fflr~jd~ 

KgXf, j = s FodF~fl~. 

The conditions of solvability of (4.3) - orthogonality of the right side of the equation 
to unity in integration over $~j _ are satisfied by virtue of (3.15). The uniqueness of the 
solution is assured by the normalization of O~j [see (4.2)]. The functions Oej equal zero 
only when the conditions A~j = 0 and y~j = 0 are satisfied simultaneously. For H # 1 the 
second of them is satisfied if p~1 and K~j do not depend on Ej. By its definition, A~j = 0 
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when Xs~ and. H~!la do not depend on $~ and Ej and hence are identically equal to Z/n. Here 
and later n is ~he d e n s i t y  o f  i n e r t  a toms .  C o n s e q u e n t l y ,  in  t h e  g e n e r a l  c a s e  Caj # 0 and 
their values are given by the estimates 

�9 ~ j~(H-- I )K~P~(K~ + p~)-l, ~ ~ ~.sB~Bgl  ~<~. 

In a first approximation in Sonine polynomials, for #aj we find 

(4.4) 

with 

, .O)r /w.2 ~ CP~j ~j~l/~ ~ j, W = (~j  - -  u) (m/2kT)l/~,: 

ao~j r ~ ' ( 1 )  ]l:f ' ~  hctq. 0 ' ( 1 1 )  --1 - -  Kl~k~] ( 1 6 ~ M B ~ 1 ~ )  . 

Here t h e  i n t e g r a l s  f i ( l~ )  z~ a r e  d e t e r m i n e d  in  [ 1 0 ] ;  ~j = E j / k T ;  ~m = m(m + m i ) - z ;  m i i s  t h e  mass 

of an inert atom; the coefficients A (~) are given by the expressions (3.16); 

~fl b c ~-~ ~+~ 
~_~ ~+~, o~< ~; 

ba+l "N~ ~z+lq ar  = ~ F  �9 The q u a n t i t i e s  b a r e  d e f i n e d  as  q 

( ~ ]3/2 ( ~g2,~ 

With allowance for ~aj 
simplified for the model o~ 
additional term 

# 0, the expressions (3.6) and (3.9), the first of which must be 
a reaction from the level a = 6, are altered as follows: The 

~ , ~-lq (4 5) D(z = E n (ZP~-I) -1 E B h  F~hF~)((I)~-lq --  r dF~h d~ d'~h " 
6=i qh 

$ 
appears on the r i g h t  in  ( 3 . 6 ) ,  t h e  sum D~ = D ~ - - ~  BxDz and 

5 6 = n (ZKg) -1 ~ Bh y F~hFor dg~a (4.6) 

with a minus sign must be added to the expression for W from (3.9) inside the brackets on the 
r i g h t ,  and 

I + K~B~Lp(H-- C--  A~) + S ,  + D~ ( 4 . 7 )  

must  a p p e a r  i n  t h e  e x p r e s s i o n  f o r  Y6 f rom ( 3 . 9 )  i n s i d e  t h e  b r a c k e t s  on t h e  r i g h t .  

These  changes  have  a g e n e r a l  c h a r a c t e r  and a r e  v a l i d ,  e . g . ,  in  t h e  c a s e  when a l l  t h e  
c o l l i s i o n a l  c r o s s  s e c t i o n s  a r e  c o m p a r a b l e  w i t h  e a c h  o t h e r .  When t h e  c o n d i t i o n s  ( 4 . 1 )  a r e  
satisfied, the contribution of y~j and ~j to W, Y~, and X~ can be neglected. For K B % P~ % 

R % i, when the above solution is invalid and suitable only for estimates, one can show, using 
(4.4) and the expressions for the W, Y~, and X~ altered with allowance for (4.5)-(4.7), that 
the disturbance of f~/0 is finite here and introduces finite corrections to the reaction rate 
and the populations of energy levels. Since #~j are proportional to (H - i), the disturbance 
does not change the equilibrium dissociation constant. In accordance with (4.4), the value 
of ~j decreases in proportion to BBB -i with a decrease in E~. 

In conclusion, the author thanks V. S. Galkin, M. N. Kogan, and E. G. Kolesnichenko for 
useful comments in a discussion of the work. 
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OPTIMIZATION OF ELECTRODYNAMIC ACCELERATION REGIMES 

FOR CYLINDRICAL CONDUCTORS 

S. A�9 Kalikhman UDC 538�9 

At the present time electromagnetic accelerators which use the action of an 
impulsive electromagnetic field on a current-carrying conductor appear to be 
promising devices for the study of high-speed collisions. In the regime using 
separate sources for the accelerating magnetic field and the current in the 
conductor being accelerated it is possible to bring cylindrical conductors up 
to velocities exceeding 12 km/sec [i]. Acceleration regimes have been calculated 
previously [2] assuming independence of the current density in the conductor from 
the accelerating magnetic field. However, as analysis of transient electromagnetic 
processes occurring in the interaction of an impulsive electromagnetic field with 
a cylindrical conductor shows [3], the maximum current density, limited by 
heating conditions, depends significantly on the induction of the accelerating 
magnetic field. In the present study we will analyze regimes for electrodynamic 
acceleration of cylindrical conductors with consideration of diffusion of both the 
intrinsic and the external impulsive magnetic field within the conductor�9 

We will use an idealized two-dimensional calculation model in which an infinitely long 
conductor with axial current i is located in a homogeneous transverse accelerating magnetic 
field with induction B. We will assume that the current and magnetic field induction vary 
with time as follows: 

B = B o [ i  - -  e x p  ( - - t / T ) ] ,  i = i o [ i -  e x p  ( - - t /  T) ]~(t - -  to), 

where ~(t - t o ) is a unit function [4]. 

Such current forms can be realized with power supply from high-Q inductive supplies 
with time constants much greater than the acceleration time [5]�9 Similar forms can be 
obtained from capacitive supplies with active load switching [6]. Introduction of a 
delay time t o permits more complete use of the magnetic field induction, which, as will be 
shown below, allows attaining additional velocity in some cases. 
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